
PRELIMINARY STORMWATER SITE PLAN FOR CASCADE MIXED USE

ARLINGTON, WASHINGTON

SEPTEMBER 3, 2021

CASCADE MIXED USE PAGE 1

MR 1: PREPARATION OF STORMWATER SITE PLANS

DRAINAGE PLAN DESCRIPTION

This Stormwater Site Plan has been prepared for a proposed four-story mixed-use building with retail/commercial space and surface parking on the ground floor with additional underground parking. The project site is currently undeveloped and involves the construction of the building on the site. Figure 1: Vicinity Map depicts the location of the project.

The property consists of one parcel (31052100307300) located north of 172nd St NE on a private access and totaling 80,399 SF or 1.85 acres. The site is currently undeveloped. Unopened right of way with a gravel trail/access bounds the north frontage, a private drive, commercial buildings and parking lots bounds the south frontage, a Best Western Hotel bounds the east, and several multi-family buildings bound the west.

Access for the proposed development will be from 173rd St NE and 172nd St NE between 3617 and 3533. The proposed development is to construct a four-story mixed-use building with retail/commercial space and surface parking on the ground floor with additional underground parking, see Figure 3: Developed Conditions for the layout.

The topographic map of the site shows that the ground ranges from 124 to 126 feet in elevation. See Figure 2: Existing Conditions for a graphic depiction of the current site conditions.

METHODOLOGY

The 2014 Department of Ecology Stormwater Manual as adopted by the City of Arlington was used as the basis of design. The site has the following characteristics:

- Approximately 1.85 ac disturbed area.
- Greater than 35% existing impervious (gravel). A redevelopment site.
- The project will result in approximately 62,300 sf of new impervious area (pavement & roof on existing gravel is new impervious).
- The project will result in approximately 0 sf of replaced impervious area.
- The project has a value greater than 50% of the existing conditions.

This requires the drainage system to meet Minimum Requirements 1-9.

SOILS DESCRIPTION

According to the geotechnical report prepared by Geo Group Northwest, Inc titled *Geotechnical Engineering Investigation* and dated June 17, 2021, the soils underlying the site are medium dense sand. Groundwater was encountered approximately 7.5 feet below grade (rough elevation 118). CEC calculations indicated <5 while infiltration testing indicated a design rate of 9 inches per hour.

CASCADE MIXED USE PAGE 2

CRITICAL AREAS

There are no critical areas on or near the site. A review of the Department of Ecology 303d list does not indicate a downstream listing.

MR 2: SWPPP NARRATIVE

With less than 1 acre of disturbance, a Department of Ecology Construction Stormwater Permit will not be required.

A separate SWPPP narrative based on the DOE template will be provided with the construction documents.

MR 3: WATER POLLUTION SOURCE CONTROL

Source control will consist of both construction BMP's and long term source controls. The temporary measures will be included in the SWPPP. Permanent Source Control will be as follows:

- Container storage of wastes;
- Vegetation management;
- Cleaning of paved surfaces;
- Storm drainage maintenance.

MR 4: PRESERVATION OF NATURAL DRAINAGE

There are no natural drainage systems in the local area. Given the sandy soils, most precipitation would infiltrate. Therefore, infiltration of runoff from the development is proposed.

MR 5: ON-SITE STORMWATER MANAGEMENT

As the site is located in the City of Arlington and will be required to meet MR #1-9, it can achieve MR 5 requirement either through the use of List #2 or by meeting the Low Impact Development Performance Standard. Meeting the Performance Standard is proposed.

See MR 7 for the infiltration system design.

LAWN AND LANDSCAPED AREAS:

BMP T5.13 Post Construction Soil Quality and Depth will be implemented on disturbed and landscaped areas. It is expected that most disturbed soil will be covered with new impervious. Select site topsoil will be used for those small areas where pervious surfaced need restoration.

.

CASCADE MIXED USE PAGE 3

MR 6: RUNOFF TREATMENT REQUIREMENTS

With more than 5,000 sf of pollution generating impervious surface the site requires runoff treatment. Per Figure 2.1 – Treatment Facility Selection Flow Chart, the site requires the following measures:

Oil Control: The site does not meet the threshold of 100 vehicles per day/1,000 sf of building area.

Infiltration for Treatment: The soils were tested for Cation Exchange Capacity and the two samples measured 10.8 and 11.3. Both were greater than 5 CEC and therefore the soil does have the ability to filter runoff. No further treatment requirements are proposed.

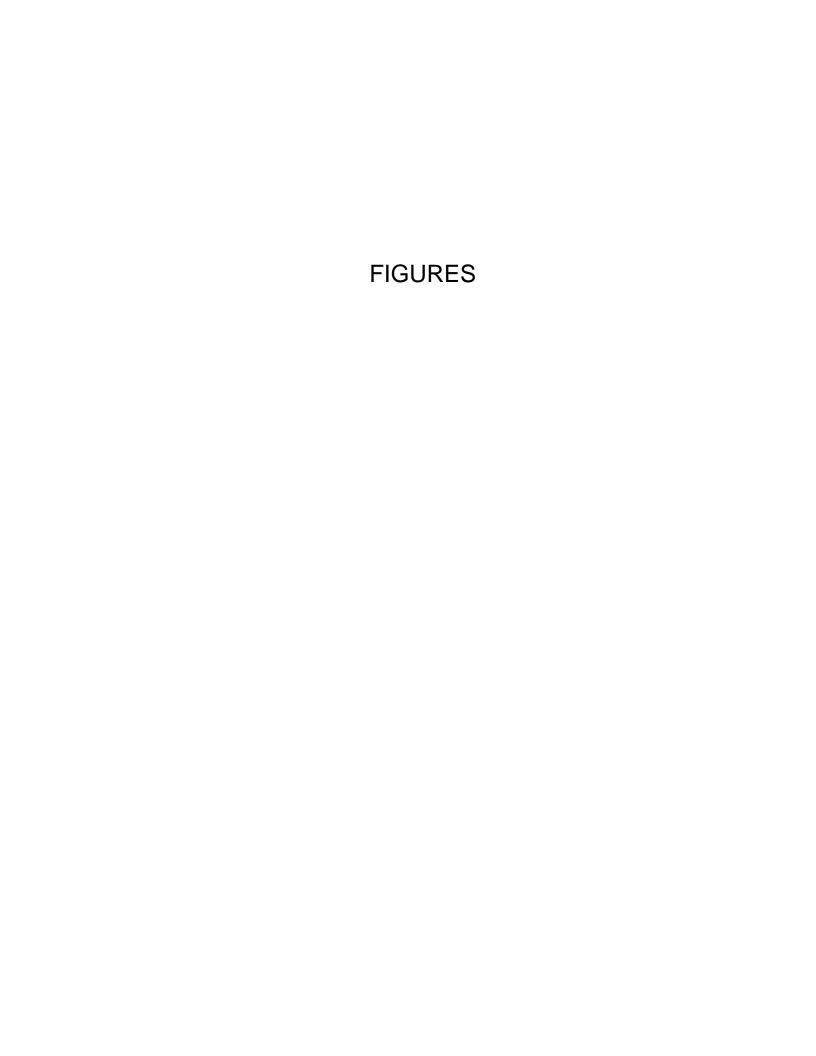
MR 7: FLOW CONTROL

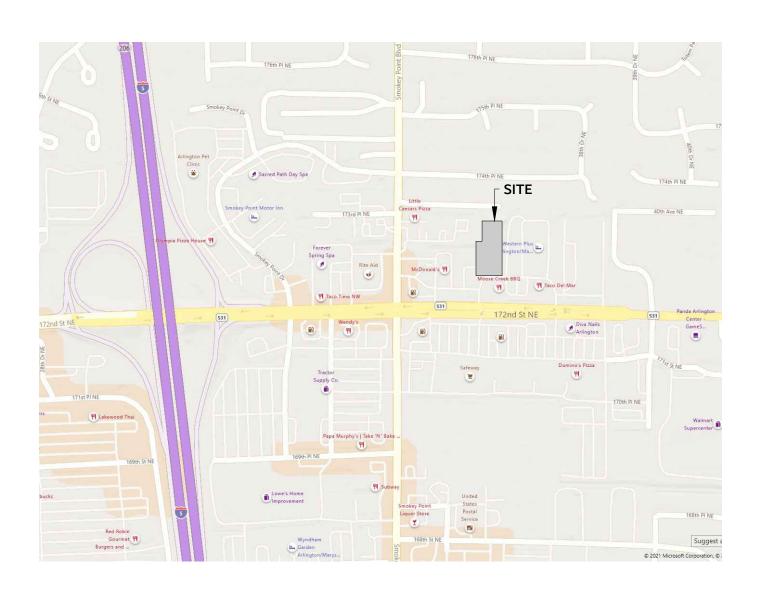
Flow control is required for the site development. The major system will be placed under the parking lot access to the east of the building. It is sized to handle the access, the parking, and the roof area which constitute the majority of the site impervious.

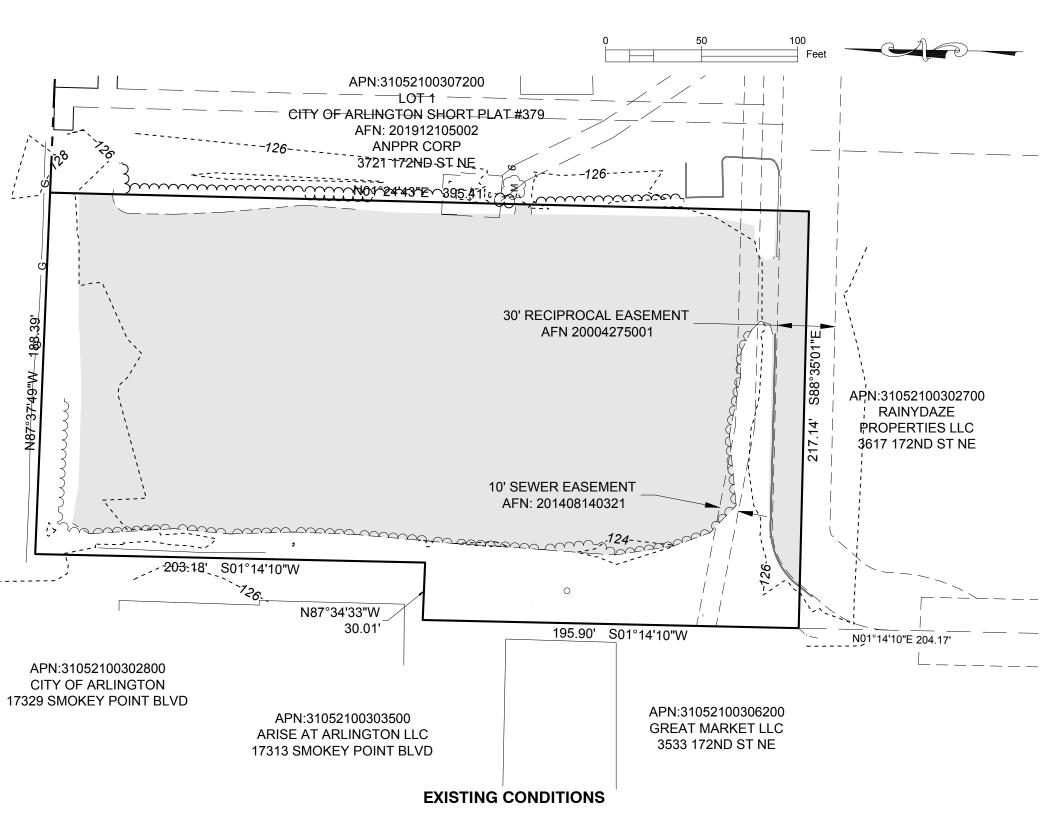
The conceptual trench has the following characteristics:

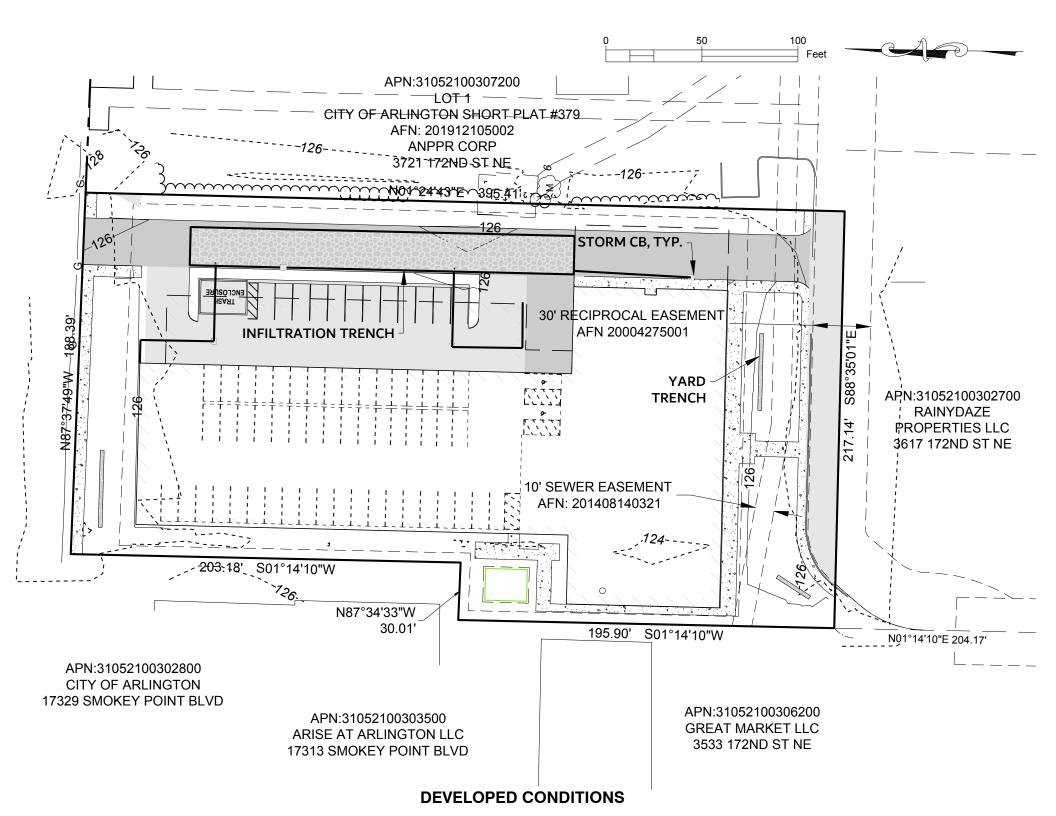
Total Bottom Area	4,200 sf (20 ft x 210 ft)
Storage Depth	1.5 ft
Porosity of Rock	0.35
Detention Volume	2,205 cf

With those parameters, the trench infiltrates 100% of the tributary basin. The depth has been kept to a minimum to provide clearance from the groundwater. Estimated bottom of trench is 122.3 with the estimated groundwater at 118. A mounding analysis will need to be provided with the final design.


Smaller systems will be used around the building for landscaping areas and for the proposed play area. These have not been sized as this time as those areas are on flux, however, there is room for these facilities and the combination of small basins and BMP T5.13 amended topsoil will not require large systems.


MR 8: WETLANDS PROTECTION


There are no wetlands on or near the site.


MR 9: OPERATION AND MAINTENANCE MANUAL

An Operations and Maintenance Manual will be provided with the construction documents.

WWHM2012 PROJECT REPORT

Project Name: Cascade Mixed Use

Site Name: Site Address: City :

Report Date: 9/3/2021
Gage : Everett
Data Start : 1948/10/01
Data End : 2009/09/30
Precip Scale: 1.20

Version Date: 2019/09/13

Version : 4.2.17

Low Flow Threshold for POC 1 : 50 Percent of the 2 Year

High Flow Threshold for POC 1: 50 year

PREDEVELOPED LAND USE

Name : Basin 1

Bypass: No

GroundWater: No

Pervious Land Use
A B, Forest, Flat

1.62

Pervious Total 1.62

Impervious Land Use acre

Impervious Total 0

Basin Total 1.62

Element Flows To:

Surface Interflow Groundwater

MITIGATED LAND USE

Name : Basin 1

Bypass: No

GroundWater: No

 Pervious Land Use
 acre

 C, Lawn, Flat
 .34

 Pervious Total
 0.34

 Impervious Land Use
 acre

 ROADS FLAT
 1.28

 Impervious Total
 1.28

1.62

Element Flows To:

Basin Total

Surface Interflow Groundwater

Gravel Trench Bed 1 Gravel Trench Bed 1

Name : Gravel Trench Bed 1
Bottom Length: 210.00 ft.
Bottom Width: 20.00 ft.
Trench bottom slope 1: 0 To 1

Trench Left side slope 0: 0 To 1

Trench right side slope 2: 0 To 1

Material thickness of first layer: 4

Pour Space of material for first layer: 0.35

Material thickness of second layer: 0
Pour Space of material for second layer: 0
Material thickness of third layer: 0

Pour Space of material for third layer: 0
Infiltration On

Infiltration rate: 9
Infiltration safety fact

Infiltration safety factor: $\boldsymbol{1}$

Wetted surface area On

Total Volume Infiltrated (ac-ft.): 284.242
Total Volume Through Riser (ac-ft.): 0.011
Total Volume Through Facility (ac-ft.): 284.253

Percent Infiltrated: 100

Total Precip Applied to Facility: 0

Total Evap From Facility: 0

<u>Discharge Structure</u> Riser Height: 1.5 ft. Riser Diameter: 8 in.

Element Flows To:

Outlet 1 Outlet 2

Gravel Trench Bed Hydraulic Table

Stage(feet) Area(ac.) Volume(ac-ft.) Discharge(cfs) Infilt(cfs)

0.0444 0.0889 0.1333 0.1778	0.096 0.096 0.096 0.096	0.001 0.003 0.004 0.006	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
0.2222 0.2667 0.3111 0.3556	0.096 0.096 0.096 0.096	0.007 0.009 0.010 0.012	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
0.4000 0.4444 0.4889 0.5333	0.096 0.096 0.096 0.096	0.013 0.015 0.016 0.018	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
0.5778 0.6222 0.6667 0.7111	0.096 0.096 0.096 0.096	0.019 0.021 0.022 0.024	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
0.7556 0.8000 0.8444 0.8889	0.096 0.096 0.096	0.025 0.027 0.028 0.030	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
0.9333 0.9778 1.0222 1.0667	0.096 0.096 0.096 0.096	0.031 0.033 0.034 0.036	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
1.1111 1.1556 1.2000 1.2444	0.096 0.096 0.096	0.037 0.039 0.040 0.042	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
1.2889 1.3333 1.3778 1.4222	0.096 0.096 0.096	0.043 0.045 0.046 0.048	0.000 0.000 0.000 0.000	0.875 0.875 0.875 0.875
1.4667 1.5111 1.5556 1.6000	0.096 0.096 0.096	0.049 0.051 0.052 0.054	0.000 0.008 0.092 0.219	0.875 0.875 0.875 0.875
1.6444 1.6889 1.7333 1.7778	0.096 0.096 0.096	0.055 0.057 0.058 0.060	0.367 0.513 0.639 0.730	0.875 0.875 0.875 0.875
1.8222 1.8667 1.9111 1.9556	0.096 0.096 0.096	0.061 0.063 0.064 0.066	0.788 0.847 0.897 0.944	0.875 0.875 0.875 0.875
2.0000 2.0444 2.0889 2.1333	0.096 0.096 0.096	0.067 0.069 0.070 0.072	0.989 1.032 1.074 1.114	0.875 0.875 0.875 0.875
2.1778 2.2222 2.2667 2.3111	0.096 0.096 0.096	0.073 0.075 0.076 0.078	1.152 1.189 1.225 1.260	0.875 0.875 0.875 0.875
2.3556 2.4000 2.4444 2.4889	0.096 0.096 0.096	0.079 0.081 0.082 0.084	1.294 1.328 1.360 1.392	0.875 0.875 0.875 0.875
2.5333	0.096	0.085	1.423	0.875

2.5778 2.6222 2.6667 2.7111 2.7556 2.8000 2.8444	0.096 0.096 0.096 0.096 0.096 0.096	0.087 0.088 0.090 0.091 0.093 0.094 0.096	1.453 1.482 1.512 1.540 1.568 1.596 1.623	0.875 0.875 0.875 0.875 0.875 0.875
2.8889	0.096	0.097	1.649	0.875
2.9333	0.096	0.099	1.675	0.875
2.9778	0.096	0.100	1.701	0.875
3.0222	0.096	0.102	1.727	0.875
3.0667	0.096	0.103	1.752	0.875
3.1111	0.096	0.105	1.776	0.875
3.1556	0.096	0.106	1.801	0.875
3.2000	0.096	0.108	1.825	0.875
3.2444	0.096	0.109	1.848	0.875
3.2889	0.096	0.111	1.872	0.875
3.3333	0.096	0.112	1.895	0.875
3.3778	0.096	0.114	1.918	0.875
3.4222	0.096	0.115	1.940	0.875
3.4667	0.096	0.117	1.963	0.875
3.5111 3.5556 3.6000 3.6444 3.6889 3.7333	0.096 0.096 0.096 0.096 0.096	0.118 0.120 0.121 0.123 0.124 0.126	1.985 2.007 2.028 2.049 2.071 2.092	0.875 0.875 0.875 0.875 0.875 0.875
3.7778 3.8222 3.8667 3.9111 3.9556 4.0000	0.096 0.096 0.096 0.096 0.096 0.096	0.126 0.127 0.129 0.130 0.132 0.133 0.135	2.092 2.112 2.133 2.153 2.173 2.193 2.213	0.875 0.875 0.875 0.875 0.875 0.875

ANALYSIS RESULTS

Stream Protection Duration

Predeveloped Landuse Totals for POC #1

Total Pervious Area:1.62 Total Impervious Area:0

Mitigated Landuse Totals for POC #1

Total Pervious Area:0.34 Total Impervious Area:1.28

Flow Frequency Return Periods for Predeveloped. POC #1
Return Period Flow(cfs)

2 year 0.001859 5 year 0.004033

10 year	0.006469
25 year	0.011298
50 year	0.016696
100 year	0.024218

Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs)

Return Period	Flow(cfs)
2 year	0
5 year	0
10 year	0
25 year	0
50 year	0
100 year	0

Stream Protection Duration

Annual Peaks for Predeveloped and Mitigated. POC #1

Aimuai	Peaks	TOT Predevero	ped and Mitig
Year		Predeveloped	Mitigated
1949		0.001	0.000
1950		0.004	0.000
1951		0.003	0.000
1952		0.001	0.000
1953		0.001	0.000
1954		0.009	0.000
1955		0.007	0.000
1956		0.001	0.000
1957		0.001	0.000
1958		0.001	0.000
1959		0.003	0.000
1960		0.002	0.000
1961		0.006	0.261
1962		0.001	0.000
1963		0.001	0.000
1964		0.004	0.000
1965		0.001	0.000
1966		0.001	0.000
1967		0.003	0.000
1968		0.001	0.000
1969		0.001	0.000
1970		0.001	0.000
1971		0.006	0.000
1972		0.001	0.000
1973		0.001	0.000
1974		0.003	0.000
1975		0.001	0.000
1976		0.003	0.000
1977		0.001	0.000
1978		0.001	0.000
1979		0.003	0.000
1980		0.001	0.000
1981		0.001	0.000
1982		0.002	0.000
1983		0.001	0.000
1984		0.001	0.000
1985		0.002	0.000
1986		0.011	0.000
1987		0.007	0.000

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.015 0.040 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Stream Protection Duration

Ranked Annual Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	0.0431	0.2606
2	0.0401	0.0000
3	0.0146	0.0000
4	0.0114	0.0000
5	0.0089	0.0000
6	0.0075	0.0000
7	0.0068	0.0000
8	0.0063	0.0000
9	0.0061	0.0000
10	0.0042	0.0000
11	0.0038	0.0000
12	0.0034	0.0000
13	0.0029	0.0000
14	0.0029	0.0000
15	0.0027	0.0000
16	0.0026	0.0000
17	0.0025	0.0000
18	0.0024	0.0000
19	0.0024	0.0000
20	0.0022	0.0000
21	0.0020	0.0000
22	0.0019	0.0000
23	0.0015	0.0000
24	0.0013	0.0000
25	0.0013	0.0000
26	0.0013	0.0000
27	0.0013	0.0000
28	0.0013	0.0000
29	0.0013	0.0000
30	0.0013	0.0000

Stream Protection Duration POC #1 The Facility PASSED

The Facility PASSED.

Flow(cfs)	Predev	Mit	Percentage	Pass/Fail
0.0009	0	0	0	Pass
0.0011	0	0	0	Pass
0.0012	0	0	0	Pass
0.0014	0	0	0	Pass
0.0016	0	0	0	Pass
0.0017	0	0	0	Pass
0.0019	0	0	0	Pass
0.0020	0	0	0	Pass
0.0022	0	0	0	Pass
0.0024	0	0	0	Pass
0.0025	0	0	0	Pass
0.0027	0	0	0	Pass
0.0028	0	0	0	Pass
0.0030	0	0	0	Pass
0.0032	0	0	0	Pass
0.0033	0	0	0	Pass
0.0035	0	0	0	Pass

0.0036	0	0	0	Pass	
0.0038	0	0	0	Pass	
0.0040	0	0	0	Pass	
0.0041	0	0	0	Pass	
0.0043	0	0	0	Pass	
0.0044	0	0	0	Pass	
0.0046	0	0	0	Pass	
0.0048	0	0	0	Pass	
0.0049	0	0	0	Pass	
0.0051 0.0052	0	0	0	Pass	
0.0052	0	0	0	Pass Pass	
0.0055	0	0	0	Pass	
0.0057	0	0	0	Pass	
0.0059	0	0	0	Pass	
0.0060	0	0	0	Pass	
0.0062	0	0	0	Pass	
0.0063	0	0	0	Pass	
0.0065	0	0	0	Pass	
0.0067	0	0	0	Pass	
0.0068	0	0	0	Pass	
0.0070	0	0	0	Pass	
0.0071	0	0	0	Pass	
0.0073	0	0	0	Pass	
0.0075	0	0	0	Pass	
0.0076	0	0	0	Pass	
0.0078	0	0	0	Pass	
0.0079	0	0	0	Pass	
0.0081	0	0	0	Pass	
0.0083	0	0	0	Pass	
0.0084	0	0	0	Pass	
0.0086	0	0	0	Pass	
0.0087	0	0	0	Pass	
0.0089	0	0	0	Pass	
0.0091	0	0	0	Pass	
0.0092	0	0	0	Pass	
0.0094	0	0	0	Pass	
0.0095	0	0	0	Pass	
0.0097	0	0	0	Pass	
0.0098 0.0100	0	0	0	Pass	
0.0100	0	0	0	Pass Pass	
0.0102	0	0	0	Pass	
0.0105	0	0	0	Pass	
0.0106	0	0	0	Pass	
0.0108	0	0	0	Pass	
0.0110	0	0	0	Pass	
0.0111	0	0	0	Pass	
0.0113	0	0	0	Pass	
0.0114	0	0	0	Pass	
0.0116	0	0	0	Pass	
0.0118	0	0	0	Pass	
0.0119	0	0	0	Pass	
0.0121	0	0	0	Pass	
0.0122	0	0	0	Pass	
0.0124	0	0	0	Pass	
0.0126	0	0	0	Pass	

0.0127	0	0	0	Pass
0.0129	0	0	0	Pass
0.0130	0	0	0	Pass
0.0132	0	0	0	Pass
0.0134	0	0	0	Pass
0.0135	0	0	0	Pass
0.0137	0	0	0	Pass
0.0138	0	0	0	Pass
0.0140	0	0	0	Pass
0.0141	0	0	0	Pass
0.0143	0	0	0	Pass
0.0145	0	0	0	Pass
0.0146	0	0	0	Pass
0.0148	0	0	0	Pass
0.0149	0	0	0	Pass
0.0151	0	0	0	Pass
0.0153	0	0	0	Pass
0.0154	0	0	0	Pass
0.0156	0	0	0	Pass
0.0157	0	0	0	Pass
0.0159	0	0	0	Pass
0.0161	0	0	0	Pass
0.0162	0	0	0	Pass
0.0164	0	0	0	Pass
0.0165	0	0	0	Pass
0.0167	0	0	0	Pass

Water Quality BMP Flow and Volume for POC #1

On-line facility volume: 0 acre-feet On-line facility target flow: 0 cfs. Adjusted for 15 min: 0 cfs.

Off-line facility target flow: 0 cfs.

Adjusted for 15 min: 0 cfs.

LID Report

LID Technique	Used for	Total Volume	Volume	Infiltration	Cumulative
Percent Water Quality	Percent	Comment			
	Treatment?	Needs	Through	Volume	Volume
Volume	Water Quality				
		Treatment	Facility	(ac-ft.)	Infiltration
Infiltrated	Treated				
		(ac-ft)	(ac-ft)		Credit
Gravel Trench Bed 1 POC	N	258.67			N
100.00					
Total Volume Infiltrated		258.67	0.00	0.00	
100.00 0.00	0%	No Treat. Credi	.t		
Compliance with LID Standard 8					
Duration Analysis Result = Passed					

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by: Clear Creek Solutions, Inc. 2005-2021; All Rights Reserved.